EvoNF: A Framework for Optimization of Fuzzy Inference Systems Using Neural Network Learning and Evolutionary Computation

نویسنده

  • Ajith Abraham
چکیده

Several adaptation techniques have been investigated to optimize fuzzy inference systems. Neural network learning algorithms have been used to determine the parameters of fuzzy inference system. Such models are often called as integrated neuro-fuzzy models. In an integrated neuro-fuzzy model there is no guarantee that the neural network learning algorithm converges and the tuning of fuzzy inference system will be successful. Success of evolutionary search procedures for optimization of fuzzy inference system is well proven and established in many application areas. In this paper, we will explore how the optimization of fuzzy inference systems could be further improved using a metaheuristic approach combining neural network learning and evolutionary computation. The proposed technique could be considered as a methodology to integrate neural networks, fuzzy inference systems and evolutionary search procedures. We present the theoretical frameworks and some experimental results to demonstrate the efficiency of the proposed technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Export Behaviour Modeling Using EvoNF Approach

The academic literature suggests that the extent of exporting by multinational corporation subsidiaries (MCS) depends on their product manufactured, resources, tax protection, customers and markets, involvement strategy, financial independence and suppliers’ relationship with a multinational corporation (MNC). The aim of this paper is to model the complex export pattern behaviour using a Takagi...

متن کامل

The Prediction of Forming Limit Diagram of Low Carbon Steel Sheets Using Adaptive Fuzzy Inference System Identifier

The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

PSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent

In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره cs.AI/0405032  شماره 

صفحات  -

تاریخ انتشار 2002